AMGE BASED ON ELEMENT AGGLOMERATION
JIM E. JONES AND PANAYOT S. VASSILEVSKI

ABSTRACT. This paper contains the main ideas for an AMGe (algebraic multigrid
for finite elements) method based on element agglomeration. In the method,
coarse grid elements are formed by agglomerating fine grid elements. Compatible
interpolation operators are constructed which yield coarse grid basis functions with
a minimal energy property. Heuristics based on interpolation quality measures
are used to guide the agglomeration procedure. The performance of the resulting
method is demonstrated in two-level numerical experiments.

1. INTRODUCTION

Algebraic multigrid (AMG) [5], [6], [13], [14], was developed as a generalization
of standard geometric multigrid to problems that either had no grid or were posed
on unstructured grids where standard geometric multigrid methods are difficult to
apply. The standard AMG method works well for many problems; however, its per-
formance on some finite element problems is unsatisfactory. The heuristics used in
standard AMG are based on properties of M-matrices, and finite element discretiza-
tions can produce non M-matrices. This deficiency in the standard AMG method
led Brezina et al. [7] to develop AMGe (algebraic multigrid for finite elements).
This previous paper showed how to use multigrid convergence theory and the local
stiffness matrices for the individual finite elements to produce interpolation opera-
tors superior to those produced by standard AMG. This current paper uses AMGe
ideas to produce not only interpolation operators, but coarse grids (and elements) as
well. The coarse elements are based on agglomeration of fine elements. A key point
is the construction of a local, compatible interpolation operator. The interpolation
is local in the sense that degrees of freedom in an agglomerate interpolate only from
other degrees of freedom in the same agglomerate. The interpolation is compatible
in that the interpolation to degrees of freedom shared by two or more agglomerates
is uniquely defined. In this way, the coarse element matrices are variationally related
to the assembled matrices in a given agglomerated element, as well as (due to the
compatibility) the global coarse matrix is variationally obtained from the global fine
grid matrix.
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In the remainder of this introductory section, we outline the proposed agglomer-
ation AMGe method. The goal is to solve a system

Au=f{,

where A is the positive definite matrix arising from a finite element discretization. In
the agglomeration AMGe method, we assume that we have access to the individual
element matrices. Our goal is to produce the components needed for a two-level
solver: a coarse grid, grid transfer operators, and the coarse grid operator. In order
to apply the method recursively (i.e. multigrid as opposed to two—level), individual
element matrices on the coarse level must be produced. These goals are outlined
below.

e GIVEN INFORMATION:

1. A list Dy = {d} of the fine grid degrees of freedom (dof).

2. A list & of fine grid elements {e}, where each element e, by definition,
is a list of degrees of freedom, i.e., e = {d1, do,..., dn }. Typically, &
provides an overlapping partition of the set Dy.

3. The element matrices A, i.e., a list of n, X n, real numbers associated with
the degrees of freedom of e = {d1, do, ..., d,, }. Equivalently, one may say
that a quadratic form a.(v, v) = vl A.v, is given where v is a vector (or

v(d1)

v d2
discrete function) defined on Dy restricted to e; i.e., v, = v|, = ( )

v(dn,)
Note that this will be the notation consistently used throughout this paper,
namely, for any subset {2 C D and a vector v defined on D we will denote
by vq = V|, the restriction of v to Q. When it simplifies the notation,
we will sometimes use superscripts instead of subscripts with the same
meaning (restriction to subset).
e OUTPUT COARSE INFORMATION:
1. A coarse set of degrees of freedom, D, C Dy.
2. A set of coarse elements £ = {E_}, i.e., an overlapping partition of D..

3. The coarse element matrices Ag, for each E, € &..
f D;\D
4. An interpolation mapping P : D, + Dy such that P = [ J;c ] {’Df\ “.
To be specific, assume that our “algebraic” elements (i.e., a list of collections {e}
of degrees of freedom) come from a finite element triangulation of a three dimen-
sional domain and respective conforming finite element spaces with nodal degrees
of freedom. To create the coarse information we propose the following steps:

e Create a set of agglomerated elements & = {E} where each £ = e; U ey U
«+-Uep,, € € & and E is connected set. By connected, we mean that for
any two elements, e;,e; € E, there exists a connecting path of elements also
in E' beginning with e; and ending with e; such that consecutive elements in
the path have non-empty intersection. This is a result of the “topological”
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algorithm used in the agglomeration procedure (Algorithm 4.1). Note each
fine grid element e should belong to a unique agglomerated element.
e Define faces and vertices of the agglomerated elements as follows.
— Consider all intersections E; N E;, for all pairs of different agglomerated
elements E; and E;. An intersection of this type is called a face if it is
a maximal one, i.e., if it is not contained in any other intersection. This
defines the set of faces F = {F}. We will also assume that a list of
boundary faces 9D will be given and we will append them to &. A formal
definition of a boundary face is then simply a maximal set of the type
E N oD, i.e., it is not a proper subset of any other intersection set (either
of type E; N E; or of type E; N 0D);
— Finally, consider all faces F' € F as lists of degrees of freedom. For each
dof d compute the intersection N{F : d € F'}. The minimal (non—empty)
intersections define the set of vertices V = {V'}.

For true finite element applications the last set of vertices will be disjoint sets;
each vertex may contain more than one degree of freedom. This is the case if
the underlying problem is a finite element discretization of a system of PDEs, like
elasticity for example. For three-dimensional problems, one may refine the above
algorithm to create edges of the agglomerated elements; edges are defined to be
maximal intersections of faces. In order to keep the presentation simple we will
focus mostly on two-dimensional problems.

At any rate, the above “topological” information (faces and vertices of elements)
is readily provided by most of the finite element grid generators. So, one may assume
that this information is given on the fine grid. If not, one can create it as explained
above based on computing, for faces, the maximal intersection sets of the type e;Ne;;,
e; # e; or of the type e; N boundary surface.

In order to generate the same information on a coarse level, it can be advantageous
to carry out the intersection sets algorithm by preserving the dimensionality (or
topology) in the following sense. If E is an agglomerated element one has the
option to represent E either in terms of the dofs of the original elements, or in
terms of the faces of the original elements. If the agglomerated elements and the
boundary surfaces 9D are represented in terms of the faces of the original elements,
then all non-empty intersections of the type E; N E; or E; N 0D are maximal. This
is the storage (agglomerated elements in terms of faces of elements) that we use in
practice.

Definition 1.1 (Coarse degrees of freedom). Having computed the set of vertices
we define our (minimal) coarse set of degrees of freedom to be those degrees of
freedom which are contained in a verter of an agglomerated element:

D,={deD;: IV eV withd € V}.

Note that in practice, one may have to enrich the minimal (vertexr) set of coarse
degrees of freedom for better performance.
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Figure 1 shows the the coarse degrees of freedom for a 2-d scalar problem. Note
that for a scalar problem, vertex and degree of freedom are synonymous.

Ficure 1. Triangulation of domain €2 into triangular and quadrilat-
eral fine grid elements. Agglomerated elements Ey, Es, ..., E5 and
coarse degrees of freedom.

Definition 1.2 (Coarse elements). For each agglomerated element E, we define a
coarse element E. consisting of degrees of freedom contained in a vertex of E, i.e.

E.=D.NE.

For each agglomerated element E (or equivalently for each coarse element E.), we
construct a local interpolation operator Pr. This operator maps a vector defined at
coarse degrees of freedom in E. to a vector defined at the fine degrees of freedom
in E. We require the set of local interpolation operators be compatible in that: if
d € By N B, then Pp,vge(d) = Pg,vEg(d) for all vectors v. In words, compatibility
means that at shared degrees of freedom, the interpolation rules for the agglomerates
must agree. Compatibility implies the following restriction.

Requirement 1.1. For d € Dy, let N(d) = N{all agglomerated elements E(d)
that contain d}. Then, the value v(d) must be interpolated from the dofs at the
vertices of N(d). Note, we assume interpolation is the identity at vertices.

Definition 1.3 (Interpolation mapping). Having constructed a compatible set of
local interpolation mappings {Pg}, define a global mapping P : D, — D by
Pv |, = Pgvg,. Compatibility implies this uniquely defines P.
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Definition 1.4 (Coarse element matrices). Assume that a compatible set of inter-
polation operators { Pg} has been computed. Let Ag be the assembled matriz corre-
sponding to the agglomerated element E = e; Uey U ---Ue,, defined by

ng
(1.1) vEAgwy = ZveTiAeiwei for any vg, wg.
i=1
Then, the coarse element matriz for the coarse element E., is defined by
Note that the global coarse (stiffness) matrix A° defined as
A¢ = PTAP

can be assembled from the coarse element matrices, i.e., that

Ne
T T
v, Aw, = E Vige Al Wi

=1

nE;
Indeed, for E; = | €],
j=1
> Vi A we: =3 (Ppves)" Ap,(Pp,ws)
i=1 i=1
= ;(PVC‘El)TAEl(PWJEl)

Tie

= 3% 3 (Pel )T Ay (Pwel,y)

i=1j=1
ny
= ZI(PVC\%)TA%(PWC\%)
i=
=vI'PTAPw..

We should mention at this point that there are other approaches of constructing
AMG methods that target non-M-matrices. One example is the aggregation based
AMG of Vanek, Mandel and Brezina [15]. In this method, one constructs aggregates
(non—overlapping partition of the degrees of freedom) and forms a generally unstable
(but simple) tentative prolongator. Finally, a smoothing step is applied in order to
get a better quality interpolation. In Wan, Chan and Smith [17] a direct approach
of constructing coarse bases is proposed. The bases are selected by minimizing a
quadratic energy functional while enforcing locality and a partition of unity property.
In Mandel, Brezina and Vanek [12] this approach was further developed by proposing
fast algorithms for minimizing the quadratic functional. In Chan, Xu and Zikatanov
[9] the construction of the agglomerated elements is used a posteriori in the sense that
one first selects a coarse grid (as maximal independent set) and then agglomerated
elements are constructed (based on the dual matrix graph). The agglomerates are
subsequently divided into triangles and the procedure can be recursively applied.
The interpolation weights are computed based on averaging. In that sense, the
present paper substantially differs from [9]. Our agglomeration algorithm is different
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(the coarse dofs are selected after the agglomeration is performed), and we assume
more information. Namely, similar to the original AMGe paper ([7]), we require
access to the individual elements and respective element matrices on the fine grid.
Note that this information is readily provided by most finite element grid generators.
In contrast to [7] we are able to more systematically generate the input information
(elements and their respective element matrices) on the coarse levels. This allows
straightforward recursive use of the same two—level algorithm.

The remainder of the present paper is organized as follows. In Section 2 we
consider the construction of the local interpolation mappings, based on a minimal
energy principle. Section 3 deals with energy minimization property of the coarse
basis. In Section 4, we specify an algorithm for agglomerating elements, which
provides nicely matched agglomerated elements for structured triangular or quadri-
lateral meshes. We also discuss using measures of interpolation quality to guide
the agglomeration procedure yielding semicoarsening for problems with anisotropy.
In the final Section, the performance of the resulting method is demonstrated in
two—level numerical experiments.

2. THE LOCAL INTERPOLATION MAPPINGS

In this section we present an algorithm for generating the local interpolation
mappings in a way that produces coarse grid basis functions with a quasi-minimal
energy property. Most of the proofs in this section rely on basic properties of Schur
complements of symmetric positive semi—definite matrices. A summary of these
properties can be found, for example, in [1], §3.2. The problems that we target are
second order scalar elliptic problems without the low order term as well as elasticity
in 2-d and 3-d.

We begin by defining, for each fine grid dof d, the following sets:

e a neighborhood Q(d) = U{all agglomerated elements E(d) that contain d};
e a minimal set N(d) = N{all agglomerated elements E(d) that contain d}.

Note that N(d) can be a vertex, a face or even an agglomerated element. From
the definition of vertices, each N(d) contains at least one vertex. Note, also, that
there might be multiple copies of N(d), i.e., N(d;) = N(d,) for a d; # d;. We next
introduce the following definition for the boundary of the sets N(d).

Definition 2.1. For any set N(d) different than a face or agglomerated element,
define the boundary of N(d), denoted ON(d), to be the vertices contained in N(d)
(which is non—-empty set). If N(d) is a face of an agglomerated element, define
ON(d) as the dofs in N(d) that belong to more than one face. Finally, if N(d) is an
agglomerated element FE, define the boundary, OF, as the union of all faces of E.

We now describe the construction of the local and compatible interpolation map-
pings. The set of interpolatory coarse dofs df, ..., d that will be used to interpolate
to d is constructed according to Requirement 1.1. That is, df = d if d belongs to a
vertex; otherwise, the interpolatory coarse dofs are the vertices of the set N(d).
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To define the interpolation weights for a dof d we use the following recursive
procedure. The interpolation is identity at vertices. Then, for the set N(d) assume
that the interpolation at dofs on ON(d) has already been defined, i.e., (Pv)|gy(a)
is well defined for v, specified at the vertices of N(d). Now, extend the definition of
Pv.on N(d)\ (ON(d)) by considering the neighborhood €(d) of all agglomerated
elements that contain d. Let Agy) be the assembled matrix corresponding to all
elements contained in that neighborhood. Consider the following two—by-two block
structure of Ag(q), corresponding to the partitioning (£2(d) \ ON(d)) U ON(d),

[ Aa Aw ] 19(d) \ ON(d)
(d) Ay Aw | YON(d).
Here “” stands for interior, and “b” for boundary dofs. Note that {df, ..., di} C
ON(d). The interpolation coefficients wg, 4, i = 1,2, ..., p are obtained by solving

the following equation (x¢ given),
Ay + Ay (Px)ana) = 0.
Then, the equation corresponding to a dof df in N(d) \ ON(d), gives
(Xi)df = (—A57 Au(Px)on ) ‘df'

That is, in particular for d; = d, and x° = [ (1) ] {;SI‘UCGS of N{d)\ {d} , one gets
the interpolatory coefficient Z
waee = | — A Ay <P [ (1) } }Z(Certlces of N(d) \ {ds} )
Y aN@)/ |4

This approach assumes that A;; is invertible. As the following lemma shows, this
is always the case, for symmetric positive semidefinite matrices Aq(g), if the set of
boundary dofs ON(d) is sufficiently rich.

Lemma 2.1. Given a set E, a union of fine elements, partition it into two groups:
“f "—dofs denoted by Dg, s and “c”-dofs denoted Dg, .. Let Ar be the assembled
matriz corresponding to E partitioned as follows

Ap = |:AE’ff AE’fC ] .

AE, cf AE, cc

If there exists a basis {d;} for the null-space of the assembled, symmetric positive
semidefinite matriz Ag, such that {d;} restricted to Dg, . remain linearly indepen-
dent, then Ag, 5 is invertible.

Proof. Assume that Ag ;x/ = 0. This implies that

V] a4 ]
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and since A is positive semidefinite, this implies
f
X

M

That is, is in the null-space of Ag. Therefore, we can expand it in terms of

</
0
the basis of the null-space, i.e.,
)
| =S
The second block equation implies,

0=>) cdf.

The assumption that {d;} remains linearly independent when restricted to Dg,
means that {d{} are linearly independent. Thus all ¢; = 0 and x/ = 0. That is,

Ag, ffxf = 0 implies x/ = 0, hence Ag, 7 1s invertible. O

Remark 2.1. For the model case of second order scalar elliptic equations, Lu =
1

—div(aVu) = F, a basis of the null-space of Ag is | : | and its restriction onto
1

the set of coarse dofs is again the constant vector, hence it is linearly independent.
The above lemma shows that the corresponding Ag, ¢y will be invertible.

Remark 2.2. If x is in the null-space of Ag, i.e.
!
X = [xc } and Agx =0,
X

then
AE, ffo + AE, fcxc = 0.
Thus the previously defined interpolation procedure is exact for vectors in the null—

space of Ag.

In showing that the interpolation mappings produce coarse basis functions enjoy-
ing a certain energy minimization property, we rely on the following relationships
between energy minimization and Schur complements.

Remark 2.3. Consider a matriz A with any two-by-two blocking
A= | A Ase |
Acf cc
Assume Ayy is invertible, and define the Schur complement of A on ¢ as S, =
A — AcfA;}A fe- If A is symmetric positive semidefinite, then

(2.1) viS.v,= inf vl Av.

V|c:v0
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In cases where Ay is not invertible, (2.1) can be used to define the Schur comple-
ment. Note that if A is symmetric positive semidefinite so is S.. Finally, one has
the identity

(2.2) Av=[ 0 }

SCVC
for any minimizer v, i.e., for any vector v for which vIS;v. = vl Av and v|, = v..
The following lemma is a straightforward consequence of Remark 2.3.

Lemma 2.2. Using the notation of the previous remark, assume Aysy is invertible
and let v. be a null vector of S., then v. can be uniquely extended to the null-space

of A.

We are now ready to show several energy minimization properties of the local
interpolation mappings Pg formulated for simplicity for 2—-d elements.

We first demonstrate an energy minimization property for dofs interior to an
agglomerated element. Let d belong to a unique agglomerated element £. Thus the
neighborhood €2(d), used to define interpolation, consists of the fine—grid elements
that are contained in E. Then, P = Pg is constructed based on the following
block-ordering of Ag,

B Abi Abb } 8E

The coefficients of Py are obtained by solving the equation (x¢ given)

Ag, X'+ Ap, iy (Pex)or = 0.

It is equivalent then to say that x' = —A;;! A (Pgx©) solves the minimization prob-
lem,
(2.3) min x" Apx,

x: X|gp=(Pex°%)sE

By definition, Pgx,|, = — Ai_ilAib(PExC)aE|d for all d € E that do not belong to a
face of F.

We next show an energy minimization property for dofs on faces; this is used later
to show a global energy minimization property of the coarse grid basis functions.
For every face F, the neighborhood used to define interpolation is E} U E5 where
FE. and FEj are the two neighboring agglomerated elements that form the face F
(one of them can be () if F' is a boundary face).

Lemma 2.3. For every face F = Ej N Eg, the interpolation P minimizes the
quadratic form (WF)T(SE}-’F + SE;,F)WF for wr fized at the vertices of F, where
Sg, r denotes the Schur complement of Ag on F.

Proof. Denote Fy = E; and Ey = E;,S Each dof on F' which is not a vertex is inter-
polated from the vertices of F' based on the assembled matrix Ag, g, corresponding
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to the domain F; U E,. To define P on F one looks at the matrix

A | Afp Ape | JELUES\ ( vertices of F)
OB = Ae A | }( vertices of F).

Then (Pv©)(dy) = (—A7;Asev©) (dy) for any dy € F\( vertices of F). Equivalently,
from the equations that define P on F,

Affo + Achc = 0,

one can eliminate the dofs that are on E; U Ey \ I thus ending up with the Schur
complement problem,

0 WF:[Wf] }F\ ( vertices of F)

F _
(2.4) SEUE,, FW |F\( - we | } vertices of F.

vertices of F')

Since F' is a separator for E; U E5 one has that Sg,um,, r = Sg,, r + S, . Since
SEuE,, F 18 symmetric semidefinite, problem (2.4) is equivalent to the following
minimization problem,
inf (WF)TSEluEQ, FWF.
wF‘vertices of F=W¢
By definition w¥ = Pw¢ solves problem (2.4), and thus has this equivalent mini-
mization property. U

Throughout the remainder of the paper we will assume the following relations
between the null-spaces of the assembled matrices Ax_ and Ag, for any two neigh-
boring agglomerated elements £ and E, that share a common face F.

ASSUMPTION 2.1. For any xg_ such that Agp_Xxp_ = 0 there is an extension X of
xp_ defined on E_ U E such that Ap_yp,x = 0 and X|p = xXg_. Equivalently,
Ag, xg, =0 and x|p = XE_|F.

As a corollary of the above assumption, the respective Schur complements Sg_; r
and Sp,, r of Ap_ and Ag,, on the face F' are spectrally equivalent, or equivalently,
have the same null-space.

Actually, the following local estimates hold:

Lemma 2.4. Assume, in addition to Assumption 2.1, that every null-vector v of
Ap restricted to a face F' of E is uniquely determined from its verter values v. on
F'. Note that this is always the case if the set of coarse dofs on any F' is sufficiently
rich (see Lemma 2.1). If we have determined x = Pgx, first on OF, and then in
the interior of E as specified above, the following local quadratic forms

(Ppx.)' ApPgx., inf xTAgx,

X: X|p, =Xc
are spectrally equivalent. That 1s, there exists a constant ng such that
inf  x"Apx < (Ppx.) ' AgPpx. <ng inf x'Apx.

X: X|p, =Xc x: X|p, =Xc

In other words, the coarse element matriz Af, and the Schur complement S. of Ag
on D.N FE, are spectrally equivalent.
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Proof. To prove the result it is sufficient to show that both matrices have the same
null-space. Assume now that S.x. = 0. For any face F' of F one can compute the
Schur complement of S, on F' denoted by S, r. It is clear then (see (2.2)) that

(25) Sc, FX¢e, F = 0.

Our goal is to show that (Pg)? Ag Ppx, = 0, which is equivalent to Ag(Pgx.) = 0.
By construction, one has Ag(Pgx.) = 0 in the interior of E. Also, from the definition
of Py for dofs on faces F' (see (2.4)) one has

(SE,F + SE+,F) (PEXC)F|F\vertices of F 0.

Here, E. is the neighboring element to F which shares a common face F' with E.
From Assumption 2.1 it follows that Sg r + Sk, r and Sgr have the same null-
space. Therefore their respective Schur complements on the vertices of F' (F ND,),
o, r and S, p will have the same null-space. Then (2.5) implies that o, px., r = 0.
Applying identity (2.2) (based on Lemma 2.3) yields

[ 0 } } F'\ vertices of F

(SE,F + SE+=F) (PEXC)F = } vertices of F

7
Oc, FX¢, F

from which it follows that
(Se,r + Se,,r) (Ppx:)p =0on F.
Again, the fact that Sg r + Sg, r and Sg r have the same null-space, implies that
Se,r (PpX:)p =0 on F.

This shows that (Pgx.) is a restriction of a null-vector of Ag on F. Assumption
2.1 and the additional assumption we have made that every vector in the null-space
of Ag restricted to a face is uniquely determined by its vertex values on that face,
then imply that (Pgx.),p is the restriction of a null-vector of Ay on OFE. This
together with the fact that Ag (Pgx.) = 0 in the interior of E, finally show that

Ag (Pgx.) =0 on E.

This completes the proof that Pgx. is in the null-space of Ag, i.e., that x. is in
the null-space of A% . The converse is also true. Namely, A% x, = 0 implies that
(Pgx.)TApPpx. = 0 and since Agp is symmetric positive semi—definite, one gets
that ApPgx. = 0, or that Pgx, belongs to the null-space of Ag. Therefore, x, =
Pgx.| belongs to the null-space of the Schur complement S, of Ag. O

vertices of

We then have the following global estimate by summing up the local estimates
over the individual agglomerated elements.

Theorem 2.1. The compatible local interpolation mapping P = Pg is approxi-
mately harmonic in the sense, that its norm in energy inner product is bounded,
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1.€.,
vIAv. = (Pv)TA(Pv,)
<> ng inf vEARVE
E VE"DCDE:VC
<n inf vTAv.
V]p,=Ve
The exact harmonic mapping corresponds to the best constant n = 1. As shown in
Lemma 2.4, n = Max g, thus the individual ng can be estimated locally. With this
€

result, a classical two-level Gauss—Seidel iteration (see, e.g., Bank and Dupont [3]
or Bank [2]) will have a convergence factor bounded by v*> =1 — %

Remark 2.4. Note that the proof of Theorem 2.1 does not require uniqueness of the
minimizers (hence of P). Note however that we assumed uniqueness on the faces
(see Lemma 2.4). Hence, it applies to element matrices coming from 2-d and 3-d
elasticity. If one assumes a little more (see below Assumption 2.2) the uniqueness
of P (or of the minimizers) is guaranteed.

Namely, one may assume:

AsSsuMPTION 2.2. Ifd. is a dof at a vertex and E is an agglomerated element con-
taining that vertex, the only vector in the null-space of Ag and vanishing at d. is
the zero wvector.

For the model case of 2-d and 3-d second order scalar elliptic equations (of the
form Lu = —divaVu = f), this assumption holds. However, it may not hold for
systems of PDEs (it is not true for elasticity problems, for example). If Assumption
2.2 holds, Py is defined uniquely at the interior of N(d) (edge, face or agglomerated
element E) based on a Schur complement of Agq) (to N(d)) by harmonically ex-
tending the values from the boundary of N(d) into its interior. In particular, one
has (see (2.3)) that for each E the following identity holds, wp = Pgrw,|,, for any
face (or edge) F' C E,

(26) WEACEWC - vE|F:wFi,nf£r all FCE VEAEVE.

Remark 2.5. The constants ng in Lemma 2.4 are computable and can be used as
local measures for interpolation quality in the sense that smaller ng implies better
interpolation. Theorem 2.1 shows that the local measures imply the approrimate
harmonic property of P. More details on how to compute measures of interpolation
quality and its relation with other local constants are found in Section 4.

3. ENERGY MINIMIZATION PROPERTIES OF COARSE BASIS FUNCTIONS

With the local interpolation operators defined, one can construct a coarse grid
basis function vy for each d € D, as follows. Define the coarse grid vector v§ that
is one at d and zero elsewhere and define v, as this vector interpolated to the fine
grid (i.e., vg = Pv9). It is clear then that it will be zero outside the neighborhood
Q(d) = U'_, E; of the given dof d. In this way, v, can be viewed as a basis vector
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(function) of the interpolated coarse space. Using finite element terminology, one
may also say that v, is a fine grid vector representation of a coarse-grid basis
function.

Lemma 3.1. For the model problem of finite element matrices (before imposing
Dirichlet boundary conditions) coming from second order scalar elliptic problems
(2-d or 8-d), the {v4} provide partition of unity, i.e.,

(3.1) Zvd_E}.

Proof. In the case of finite element matrices coming from 2-d (or 3—d) second order
scalar elliptic problems, constant vectors are in the null-space of the element matri-

1 1
ces. By Remark 2.2, ifv,=| : | € R" then v= Pv,= | : | € R". This holds
1 1
since vg = Pgv, g, for each coarse element E. (or agglomerated element E). This
1
in particular implies that > vya=| : | € R™ O]
d€eD, 1

Corollary 3.1. Consider the model case of finite element matrices (before imposing
Dirichlet boundary conditions) coming from second order scalar elliptic problems
(2-d or 3—-d) on quasiuniform triangulation. Let {vq} be the set of basis functions
generated by the local interpolation operators. Let {w,} be any other potential set of
local basis functions, i.e. a basis function exists for each d € D, with wq(d) =1 and
wy = 0 outside of the neighborhood Q) (d). Then the following energy minimization
property of {vq} holds

3.2 TAv, < C inf w’ Aw,.
( ) Zvd Vg S Zl‘f}dwd Wq

deD, deD,
Proof. Applying the approximate harmonic property of P for each agglomerated
element F' (Lemma 2.4), one ends up with the estimate

(Valp)" Ap(Valg) < inf wrApwr.

E: w‘vertices of E:vd‘vertices of E

Summing up over the agglomerated elements E : E C Q(d), where Q(d) is the
union of all agglomerated elements that contain the vertex d (note that v, is zero
outside €2(d)), one ends up with the global estimate
vIiAve <7 inf WgAQ(d)Wd, 7 = maxng.
wg: wd\DC:vd\Dc E
Note that w,; = 1 at the vertex d and is zero at the remaining vertices, and it is also
zero outside Q(d), i.e., it is locally supported.
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Finally, summing over all d € D, one ends up with the desired estimate

z ngvd <C Z inf WEAQ(d)Wd =C z inf ngwd.

Wqi W, =V Wq: W, =V
deDe dep, ¢ dlp,=vilp, dep. ¢ dlp.= Valp,
]

Remark 3.1. Theorem 3.1 shows, for the model case of finite element matrices
coming from second order scalar elliptic equations as well as in the elasticity, that
the coarse basis functions corresponding to the coefficient vectors vy solve the energy
minimization functional as defined in Wan, Chan and Smith [17] up to a multiplica-
tive constant. Fast algorithms to solve the problem of energy minimization functional
are proposed and analyzed in Mandel, Brezina and Vanek [12].

Remark 3.2. For finite element matrices coming from 2—d and 3—-d second order
scalar elliptic problems on quasiuniform triangulation, the coarse space produced
by the above algorithm also admits a weak approzimation property (or equivalently,
provide partition of unity, see Lemma 3.1 and also estimate (4.2)) since the element
matrices contain the constants in their null-space. Therefore the constant is exactly
interpolated from the vertices of the agglomerated elements as the same constant on
the rest of the agglomerated element. That is, with the above minimization property,
the AMGe method can actually become an optimal (or almost optimal) order MG
method if one can control the local constants ng from Lemma 2.4 which depend on the
way we agglomerate the elements at every coarsening step. If n gets large, a potential
remedy might be the AMLI stabilization procedure (cf. Vassilevski [16]) which is like
W-cycle or even more cycles. Approaches to rigorously study the convergence of the
underlined AMG method can draw on the existing analytical tools for geometric MG
convergence theory for finite element problems (see, e.g., the book by Bramble [4]).
In the present paper we do not deal with multilevel convergence results.

Remark 3.3. One can actually apply the same interpolation procedure on agglom-
erated elements using it recursively to fine—grid element matrices coming from non—

symmetric elliptic operator like convection—diffusion, e.g., Lu = —div(eVu)+b-Vu.
In Fig. 3 and 2 a coarse basis function is shown (face and rotated) using four levels
of coarsening procedure for constant convection field by =1, by = —0.5 and e = 0.1.

Note also that in this case of convection—diffusion operator the basis functions com-
puted on the coarse levels by the proposed AMGe method will provide partition of
unity (as in the symmetric operator case), and hence the coarse spaces will admit a
certain weak approrimation property. The same applies for the so—called streamline
diffusion operator Lsu = — div((e+6bb")Vu) +b- Vu where § is a mesh-dependent
parameter.

Remark 3.4. We finally remark, that the presented AMGe method can be used
in the so—called “homogenization” procedures to generate averaged coarse problems
from problems on computationally unfeasible highly refined meshes and possibly with
oscillatory coefficients (cf., e.g., [11] and references therein, see also [10]). The
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0.8

FiGURE 2. AMGe constructed “minimum energy” coarse basis func-
tion for convection—diffusion operator.

difference that we see here is that our coarsening procedure is local. We require
the solution of small local problems (involving a few elements) rather than large
subdomain solves in order to compute the effective coarse grid basis functions (or
coarse—grid element matrices).

4. ALGORITHMS FOR ELEMENT AGGLOMERATION

This section introduces the algorithm we have used in selecting the coarse grid
agglomerates. The algorithm relies of the faces and edges of the original elements
{e}; to simplify the discussion, we will focus mainly on 2—d elements (i.e., having
faces and vertices only). The method is based on the face—face graph of the fine grid
elements (i.e. face f; and f, are neighbors if they share a common vertex) and uses
an integer weight w(f) for each face f. The eliminated faces f will have a weight

w(f) = 1.
Algorithm 4.1 (Element agglomeration based on face—face graph).
e initiate: Set w(f) =0 for all faces f;
e global search: Find a face f with mazimal w(f); set E = (;
1. Set E = FEUe; Uey, where ey Ney = f, and set wmax = w(f), w(f) = —1;
2. Increment w(fi) = w(f1) + 1 for all faces fi such that w(fi) # —1 and f,
s a neighbor of f;
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FiGure 3. AMGe constructed “minimum energy” coarse basis func-
tion for convection—diffusion operator, rotated.

3. Increment w(fy) = w(fz) + 1 for all faces fo such that w(fy) # —1, fy is a
neighbor of f, and fy and f are faces of a common element;

4. From the neighbors of f, choose a face g with a mazimal w(g); if w(g) >
Wmax, Set f =g, and go to step (1);

5. If all neighbors of f have smaller weight than wya.y, the agglomerated ele-
ment E is complete; set w(g) = —1 for all faces of the elements e contained
in E; go to step global search;

This algorithm tends to produce nicely matched agglomerated elements; and pro-
duces standard multigrid coarsening (up to boundary effects) for structured grid
problems using linear or bilinear elements. See Figures 4 and 5 for the results of
this procedure applied to a uniform triangular mesh after one and two agglomeration
steps, respectively. The setup cost of the algorithm is linear, i.e., proportional to
the total number of dofs. The algorithm is easily implemented using, for example,
double linked lists.

Figures 6 and 7 show the results of the algorithm for several unstructured prob-
lems. Figures 8, 10, 12, and 14 show fine unstructured grids using triangular ele-
ments, the agglomerated elements are shown in Figures 9, 11, 13, and 15, respec-
tively. The latter are the actual grids on which the first set of numerical test was
performed.
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FiGUuRE 4. Agglomerated elements for structured triangular mesh:
one step of agglomeration.

In 3-d one has the opportunity to introduce edges. Then one may construct more
refined agglomeration algorithms that exploit this additional topological informa-
tion; namely, the edge-edge and edge-face graphs. This information, however, has
not been utilized in the present paper.

It is important to note that the above algorithm does not take into account

any matrix entries while agglomerating the elements. For structured grid problems
with anisotropy, it will produce full-coarsening. To produce semi-coarsening for such
problems, one can introduce barriers. This can be implemented by assigning to each
0, acceptable,
1, unacceptable.
through a face f, one can simply set a(f) = 1 and then in step 4. of Algorithm
4.1. one searches for a face g a neighbor to f which is with a maximal weight w(g)
and if a(g) =1 (i.e., unacceptable) one looks for an acceptable face g, (neighbor to
f) such that w(g,) = w(g). If such a face does not exist the agglomeration step is
terminated and the agglomerated element F is ready.

The way we have put barriers on the faces is based on the element matrices;
namely, given a face f = e; N ey assemble A, ., and ask if the dofs on f can be
well interpolated from the rest of the dofs in e; U ey. If the resulting measure of
interpolation quality is reasonable, we say that the face f is acceptable; otherwise
we label f as unacceptable by initializing a(f) = 1 to prevent agglomeration of e;

face another (binary) weight a(f) = To prevent agglomeration



18 JIM E. JONES AND PANAYOT S. VASSILEVSKI

FiGurE 5. Agglomerated elements for structured triangular mesh:
two steps of agglomeration.

and e;. To implement this approach, one must be able to access the quality of the
interpolation for the dofs on f. A measure of interpolation quality was proposed
in [7]. In our setting, it can be reformulated as follows. Given the interpolation
mapping P defined by interpolating dofs on f from the rest of the dofs in e; U ey,
define the quadratic form (or matrix) Wy for vectors on f by,

T . T . | vy | }dofson f,
v Wiy —1‘1,1cf(v+Pvc) Acue,(V+ Pvy); v= [ 0 } YerUes\ f.
Then the measure of interpolation quality (denoted by M; in [7]) is,

1
4.1 mep— —
) " Nl D W]
where, Dy is, for example, the diagonal of A, e, restricted to f. Small mp indi-
cates good quality interpolation; interpolation well approximates functions with low
energy. In finite element notation, small mp means that the functions v, from the
coarse space can approximate well the fine—grid functions v in a weighted L?-norm
|I-/lo- To show this, let m be a bound such that;

(4.2) iilcf [0 = 0ellg, e10es < ™ Gerue,(v,v)  forall vz vl = velp,



AMGE BASED ON ELEMENT AGGLOMERATION

®

FiGUurRE 6. Agglomerated elements: rectangular domain with un-
structured triangular elements.
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This is equivalent (letting v = vy + v, above), to
||Uf||§, elUey, <M i{}le Qeyues (Vf + Ve, v +v,) for all vy : Uf|Dc =0.

In vector notation, this becomes,

(Vf)TfoVf S m inf (V + PVC)TA81U€2 (V + PVC); for all v = |: ‘E]f :|

=m (vy)TW;pvy, for all vy.

This with the best choice of m, leads to the definition (4.1) of the measure mp.
is clear, from (4.2), that smaller mp corresponds to better interpolation quality.

Remark 4.1. One can actually compute the minimum,

V?Wffo = min (V + PVC)TA61U62(V + Pvc), VvV = [ Vf :| } dOfS on .f

0
One has, with A := A¢ e, and v, :=tv, for anyt € R,
(v+tPv) A(v +tPv,) = v  Av + 2tvT APv, + t*(Pv,)" APv,.

}o(erUeg) \ f-

19

It
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FIGURE 7. Agglomerated elements: elliptical domain with triangular elements.

FiGurE 8. Fine elements: rectangular domain with 48 unstructured
triangular elements.

vT APv,

_m and equa,ls,

The minimum with respect to t is achieved for t =

(vIAPv,)?
(Pv.)TAPv,

vIiAv —
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FiGureE 9. Agglomerated elements: rectangular domain with un-
structured triangular elements.

FiGure 10. Fine elements: rectangular domain with 1001 unstruc-
tured triangular elements.

Hence,
T 2
T . T (v APv,) [ vy
Le., vViWspvy <viAgpvy. Here, Agy represents the f-f block of A := Ag e, (see
equation (4.3) below). Note that if there is a v, such that (APv.)|; = 0, then
V?Wffo = VJTAffvf. The latter is true also for the so—called “optimal” P, i.e.,
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FicUure 11. Agglomerated elements: rectangular domain with un-
structured triangular elements.

FIGURE 12. Fine elements: rectangular domain with 4 016 unstruc-
tured triangular elements.

such that P = —A7} Ay, where A, e, is partitioned as follows:
frer 1Ue2

| Agp Age | } dofson f
(43) A81U€2_ |: Acf Acc:| } (61U€2)\f '

1

In that case, mp = ————.
’ Amin| D77 Ay s]
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e

Ficure 13. Agglomerated elements: rectangular domain with un-
structured triangular elements.

FIGURE 14. Fine elements: rectangular domain with 16 000 unstruc-
tured triangular elements.

Remark 4.2. Note that if instead of Dss one uses in (4.1) the principal submatriz
Aysp of A corresponding to the fine dofs that are not coarse, then mp = ﬁ where
v € [0,1) stands for the cosine of the abstract angle between the coarse space V, =
Vi

{v¢ = Pv.} and its hierarchical complement V; = { v/ = The angle s
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FiGure 15. Agglomerated elements: rectangular domain with un-
structured triangular elements.

measured in energy inner product, i.e.,

(VT A6 v <7 VDT A e,V (V)T Ay e, v, for all v € Vi, ve e V.

For a proof of the relation mp = # see, e.g., Vassilevski [16].

Instead of mp one can use v as a measure of the interpolation quality. Then small
~v will correspond to small mp and hence to good quality interpolation, whereas ~y
close to one will imply large mp and hence poor quality interpolation.

In following example, we will use 7 to define a measure for strength on connections
between neighboring elements and thus label faces as acceptable or unacceptable.
Consider two fine elements e; and e sharing a face f as shown in Figure 16. Let ip,
be an interpolation rule for dof z3 from z; and x5, and ¢F, be an interpolation
rule for dof z, from x5 and x4, these could be constructed as proposed in the
previous section. For 2—-d scalar elliptic problems with constant coefficients, these
are linear interpolants along the faces F; and F, treating zi, x9, x5 and xg as
coarse—grid nodes and x3 and x4 as complementary to the coarse-grid, fine-grid
nodes. Then, given a coarse function v, defined at the nodes x, z9, x5 and xg, the
mapping P/v, = U le T T4 Gofines a coarse—to—fine prolongation operator.

1y Ve, T = X3,

Let £ = e; Uey and let Ag be the assembled matrix corresponding to E. Given a
coarse grid vector v, let v, = Pcf v, be its representation on the fine-grid. Then the
local fine-grid space is decomposed as P/v.®v}, where v} are the fine-grid functions
which vanish on the coarse-grid. As mentioned, the cosine v € [0,1) of the angle
between these components can be used to measure a strength of connection between
e; and ey with respect to the given matrix Ag (or pair of element matrices A, and
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F
1
il e
2
1 3 5
F
2

FiGURE 16. Neighboring elements e; and e, with a common face
f = {z3,24}; the nodes x, 2y, x5 and zg are viewed as coarse—grid
nodes.

A, that correspond to the pair of elements e; and ey). Recall the constant + is
defined as the best constant in the strengthened Cauchy inequality

(4.4) ap (e, v}) < v Var(l, U) \/as(®}, v}), for all T, v}.

To write this inequality in matrix—vector notation, let

- [[1)

and A 5 = PTAgP. Consider the following two—by—two blocking of A B,

1. — Ap; rf A\E; fe | } complementary fine-grid nodes; i.e., z3, 24
S of Ape | } coarsenodes; ie., x1, 22,25, Ts.

Note that Ag, . is the resulting coarse matrix corresponding to E. Then the

strengthened Cauchy inequality (4.4) reads:

VZ;{E; cfv?c <y 1/VIAg, Ve \/V?TAE; ffvgl, for all v, vs)c.
A way to compute 7 is to find the largest eigenvalue m = A, > 1 of the generalized
eigenvalue problem
AE, ccd = /\SE, 749,

where Sg, ; is the Schur complement of Aponf,ie., Sg, = Ag, CC—A\E; cf (Ag; ff)_l A\E; fe-

Thenfyzw/l—%.

Definition 4.1 (Strongly connected elements). We call e; and ey strongly connected
if v 1s close to zero, i.e., when the resulting local coarse space is almost orthogonal
to its complementary (the so—called two-level hierarchical complementary) space.
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FIGURE 17. Neighboring elements e; and es; (a) hy < hy, (b) hy > hy.

Algorithm 4.1 can be modified to agglomerate only strongly connected elements.
One would set a threshold - and label a face f unacceptable if v > « by initializing

alf) = 1.

4.1. Examples of . We conclude this section with examples showing that this
definition of strongly connected elements can lead to the correct semicoarsening for
anisotropic problems. Consider the model second order elliptic bilinear form, which
restricted to an element e reads,

0y 0 0p 0
(4.5) oulov) = [ (a—ia—f%—j%) dx dy.

Consider two vertically adjacent rectangular elements (see Fig. 17) and bilinear test
functions. Consider the cases:

(a) anisotropic elements h, < hy; hy = 0.1hy, v = 0.8649; h, = 0.01h,, v = 0.8660;
these values of < indicate that the elements are weakly connected and one
should not agglomerate them.

(b) anisotropic elements h, > hy; hy = 10h,, v = 0.1698; h, = 100h,, v = 0.0173;
This example shows that since 7 is close to zero, that the elements are strongly
connected and hence one should agglomerate this pair of elements.

(c) for comparison, if hy = hy, v = 0.7746 (or 7* = £).
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TABLE 1. Two-grid convergence results; unstructured triangular
grid; Laplace operator, Gauss—Seidel smoother.

[ eid# [ 1 [ 2 | 3 [ 4 |
# fine elements 48 (1001|4016 |16 016
# coarse elements | 20 242 | 1016 | 3 859
# fine dof 35 023 | 2085 | 8095
# coarse dof 27 281 | 1083 3515
# iterations 7 9 8 8
0 0.159 | 0.320 | 0.256 | 0.260

Thus, this measure correctly leads to coarsening only in the direction of small
mesh size.

5. NUMERICAL EXPERIMENTS

In this section we present some preliminary numerical results that show the po-
tential of the proposed element agglomeration AMGe method.

We have tested the two—grid method with the coarse-grid obtained using the
agglomeration algorithm described in Section 4. After the coarse degrees of freedom
were selected the interpolation mapping is constructed as described in Section 2.
We used one forward Gauss—Seidel iteration as a pre-smoother and one backward
Gauss—Seidel iteration for a post-smoothing. The stopping criterion was relative
reduction of the residual #>~—norm by a factor of 107°.

We tested two set of problems:

e Poisson equation discretized on square domain on four “unstructured” rectan-
gular grids shown in Fig. 8, 10, 12, and 14, and and the respective grids with
agglomerated elements are shown in Fig. 9, 11, 13, and 15. Dirichlet boundary
conditions were imposed, and the results are collected in the Table 1.

e Elasticity equation coming from minimizing the quadratic functional discretized
with square bilinear elements.

(5.1) / [1 2 (Bt 0,0 +

1—v

2

1—
(Opu — Oyv)? + ?”(ayu + 0,v)?| dzdy.

Here v = % Again, Dirichlet boundary conditions were imposed, and these

results are in Table 2.

One notices the similar convergence factors ¢ and # iterations for Poisson and
elasticity problems.
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TABLE 2. Two-grid convergence results; structured rectangular grid;
elasticity operator, Gauss—Seidel smoother.

| eid# [ 1 [ 2 [ 3 [ 4]

# fine elements 400 | 900 | 1600 | 2500
# coarse elements || 118 | 253 | 438 | 673
# fine dof 882 | 1922 | 3362 | 5202
# coarse dof 314 | 624 | 1034 | 1544

# iterations 9 9 9 9
0 0.251 | 0.245 | 0.254 | 0.248
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